
c© British Computer Society 2001

Reply to ‘Comment on
“A Framework for Modelling Trojans
and Computer Virus Infection” ’ by

E. Mäkinen
FRED COHEN

Sandia National Laboratories
The University of New Haven, New Haven, CT

Email: fc@all.net

Received 3 April 2001

There may be some relatively interesting things to do in
developing Turing machine models of operating systems.
The original Turing machine model of operating systems
used to model viruses (Cohen [1]) does this to a limited
extent and can also be used as a model of networks, but
it fails to capture the full richness of modern operating
systems in detail. The advantage of this is generality, but
the disadvantage is the inability to specifically model the
detailed events in current operating systems.

There are computer viruses that operate in nonuniversal
Turing machine environments—for example, there is a set
of UDP viruses that operate in the UDP Internet Protocol
environment which is not Turing capable as far as I can tell.
For this reason, we should not restrict our study to Universal
Turing Machines.

Mäkinen [2] leaves a great deal of detail out that might
make for a new perspective on this theme. For example,
how do you ‘find a description of some other Turing
machine . . . on a tape’? This seems to me to be undecidable.

To the extent that the problem is that Turing machines are
not very useful for doing detailed models of most modern
computer systems, I have to agree—I think I even said so in
my original work in this area. The notion of viral sets that
operate in certain TMs is critical to understanding viruses.
The use of histories, while it may be painful to understand
at first glance, was the only way I could find to express what
I wanted to express. These constructs have served us well
in properly encompassing all of the viruses that have come
along since and are likely to come along henceforth. They
also do a very good job of dealing with issues of evolution,
co-evolution, etc. in computer viruses, which was why I
chose these constructs in the first place.

Mäkinen was essentially taking issue with Thimbleby
et al. [3]. Thimbleby et al. certainly seem to draw many
questionable conclusions without substantial support. For
example, the original Turing machine model from 1986

does an excellent job of modeling things like viruses
encrypting subsequent versions of themselves—and in fact,
the entire class of evolutionary mechanisms. That is why the
‘histories’ mechanism Thimbleby et al. [3] complain about
was included. The masquerade problem is also covered by
the model of a timesharing system in this dissertation—in
fact, the Trojan in the path variant was specifically covered in
this work because that is precisely how I came to understand
viruses the first time. So I strongly disagree with the notion
that Turing machine models in general cannot cover these
issues, and specifically question whether the authors have
read and understood the theoretical work in this area.

In terms of Turing machines being infinite and real
computers being finite, of course this is essentially true. But
the real question is whether the finiteness of real computers
makes much of a difference. For Turing machines, problems
are ‘undecidable’, while for real machines, they are simply
too complex to be solved by any real-world solution
mechanism. The problem with a ‘theoretical framework’ for
‘real computers’ is that it is, in some sense, an oxymoron.
Theoretical frameworks and models are designed to abstract
the critical elements of real systems for the purpose at hand
so that we can use reason and mathematics about those
elements while ignoring things we consider irrelevant for our
purposes. Real operating systems run on real computers, and
real computers are subject to all sorts of physical issues, like
solar flares and power failures, that might impact a lot of
theoretical results if we were forced to include them. The
question is how far to go in modeling the ‘real world’ and
the answer depends on what you are trying to accomplish
with your models.

If Section 2 of Thimbleby et al. [3] is questionable,
Section 3 of this same paper is thought-provoking. I do
think that, if we looked deeply into it, we might find that
the definition of a virus in Section 3 would include many
things we don’t really want to include in this class, including

THE COMPUTER JOURNAL, Vol. 44, No. 4, 2001



REPLY TO COMMENT ON MÄKINEN 327

all operating systems and applications that ‘happen to be
infected’. In other words, they seem to really be saying that
we should call any infected program a virus. This fails to
differentiate a virus from the rest of the code in a program,
and this creates untold havoc in making sense of the virus
and antivirus issue. It is sort of like saying that you are
a microphage because you contain a microphage—but of
course you are a person.

It also appears that Thimbleby et al. [3] tried to use formal
proof methods on the informal definition of viruses rather
than referring to the more theoretical work on this subject
(their citation 28) or the more definitive book Computer
Viruses (Cohen [1]) which they apparently did not find in
their research (as opposed to the paper by the same name
found in Computers and Security, Cohen [4]).

This is no doubt why they find problems with the informal
methods of showing undecidability. Thimbleby et al. [3] are
using a theoretical framework to evaluate a nontheoretical
result and ignoring the theoretical result that solved the
precise problems they find with the nontheoretical result—
and did so more than 15 years ago.

In Section 4, Thimbleby et al. [3] express possible uses
for their framework, but they give no examples of these uses
or practical methods for going from the framework to those
solutions. In order to make such a paper really worthwhile,

the authors should come up with new results. For example,
they could tell us about a new easily computable way
to detect viruses that covers a large (infinite) otherwise
noncovered class of viruses. This would show that their
theoretical framework has real power and value (anything
that detects less than an infinite class is trivial relative to the
infinite size of the class of viruses, but if we carve away
enough of the infinite subclasses, we may largely cover the
space of viruses even while leaving an infinite but very hard
to implement class of indetectable viruses left).

I guess I have revealed myself on this matter and all
matters of theory without utility. I am probably therefore
unfit for and certainly not very interested in the deep
exposition of mathematical truths without utility or novelty,
and I revel in that lack of fitness and interest.

REFERENCES

[1] Cohen, F. (1985) Computer Viruses. ASP Press.
[2] Mäkinen, E. (2001) Comment on ‘A framework for modelling

Trojans and computer virus infection’. Comp. J., 44, 321–323.
[3] Thimbleby, H. W., Anderson, S. O. and Cairns, P. (1998)

A framework for modelling Trojans and computer virus
infection. Comp. J., 41, 444–458.

[4] Cohen, F. (1987) Computer viruses—theory and experiments.
Comp. Security, 6, 22–35.

THE COMPUTER JOURNAL, Vol. 44, No. 4, 2001


